A Specific Combination Scheme for Communication Modulation Recognition Based on the Bees Algorithm and Neural Network
نویسندگان
چکیده
—Regarding to the problems of low rate of convergence and fault saturation for neural network classifier based on the algorithm of error back propagation during the signal recognition, bee colony algorithm is applied in this paper so as to extract combined feature module of signal and suggest three different algorithms including algorithm with rapidly support, super self-adaption error back propagation and conjugate gradient. These three algorithms are respectively applied in multilayer perception neural network classifier, and help achieve automatic recognition for communication signals and higher recognition rate compared with error back propagation. The simulation result shows that the algorithms put forward in this paper can overcome the drawbacks of error back propagation algorithm. Meanwhile, under the condition that nerve cell has only 20, SNR is 4dB in the hidden layer, the recognition rate of three algorithms are all higher than 95%, the system is easy to implement and has wide range of application prospect in the signal recognition.
منابع مشابه
Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملOptimization of continual production of CNTs by CVD method using Radial Basic Function (RBF) neural network and the Bees Algorithm
Optimization of continuous synthesis of high purity carbon nanotubes (CNTs) using chemical vapour deposition (CVD) method was studied experimentally and theoretically. Iron pentacarbonyl (Fe(CO)5), acetylene (C2H2) and Ar were used as the catalyst source, carbon source and carrier gas respectively. The synthesis temperature and flow rates of Ar and acetylene were optimized to produce CNTs at a ...
متن کاملAn Efficient Hierarchical Modulation based Orthogonal Frequency Division Multiplexing Transmission Scheme for Digital Video Broadcasting
Due to the increase of users the efficient usage of spectrum plays an important role in digital terrestrial television networks. In digital video broadcasting, local and global content are transmitted by single frequency network and multifrequency network respectively. Multifrequency network support transmission of global content and it consumes large spectrum. Similarly local content are well ...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCM
دوره 10 شماره
صفحات -
تاریخ انتشار 2015